Uso de Métricas en Producción de SW. a Escala

Delivery metrics

OpenSouthCode 2023 2023-06-10 Málaga. Spain

Agustín Benito Bethencourt Independent consultant

Table of Content

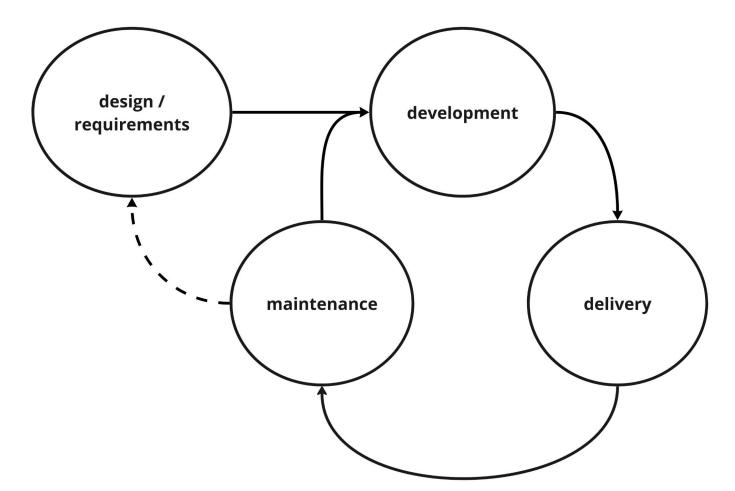
- 1. The speaker
- 2. <u>Process Using a Simple Model</u>
 - 2.1. Modelling SW product delivery
 - 2.2. Define the mathematical construct: metrics characterization
 - 2.3. Measure, Plot and Quantitative Analysis
 - 2.4. From Quantitative to Qualitative Analysis
 - 2.5. From our current scenario to a target one: Continuous Improvement
- 3. <u>Iterating the process. Addressing complexity</u>
 - 3.1. Creating a more complex model
 - 3.2. Mathematical construct: metrics characterization for our new model
 - 3.3. Measure, Plot and Quantitative Analysis
 - 3.4. From Quantitative to Qualitative Analysis
 - 3.5. From our current scenario to a target one: Continuous Improvement
- 4. Summary
- 5. More information and references

1. - The speaker

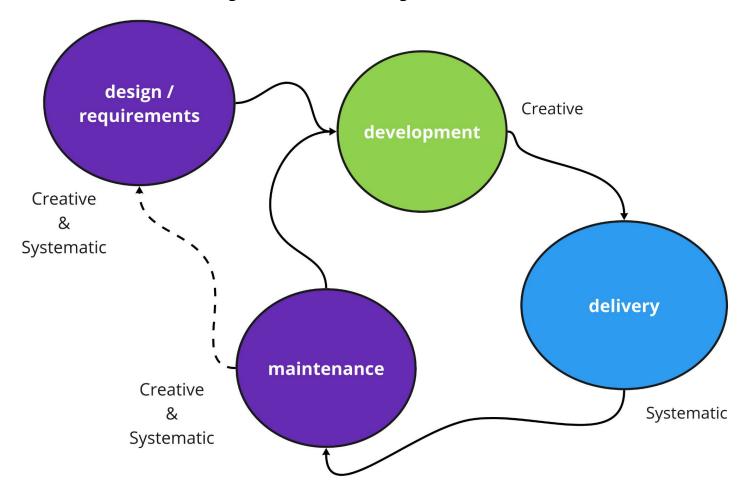
Agustín Benito Bethencourt

ww.toscalix.com

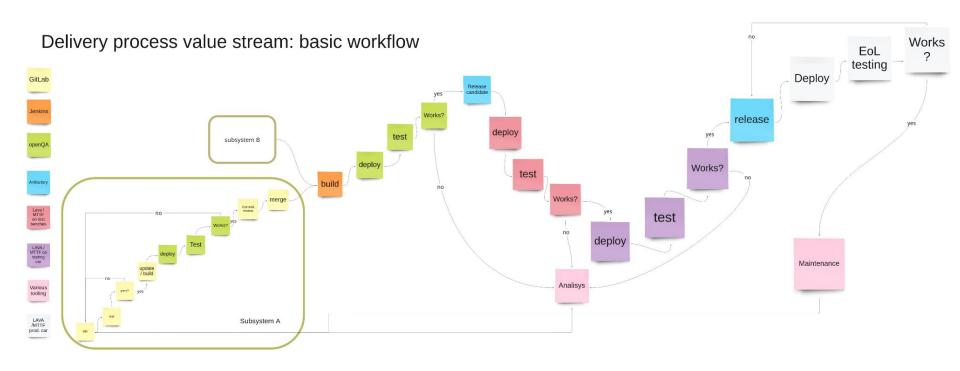
- Currently <u>independent consultant</u>, helping companies in the design and delivery of SW products.
- FLOSS, agility, Continuous Delivery and remote work advocate.
- Worked in different industries, mostly focused in FLOSS platforms and distributions (OSs).
- Worked for SUSE, Linaro, MBition (Mercedes Benz), Eclipse Foundation, Codethink, etc.
- In FLOSS since 2003. <u>Contributor to numerous</u> <u>projects</u>. KDE eV and KDE España member.
- Based between Málaga & Canary Islands, ES.
- Slimbook + openSUSE + KDE user.


If you can't explain something in simple terms, you don't understand it.-Richard Faymann

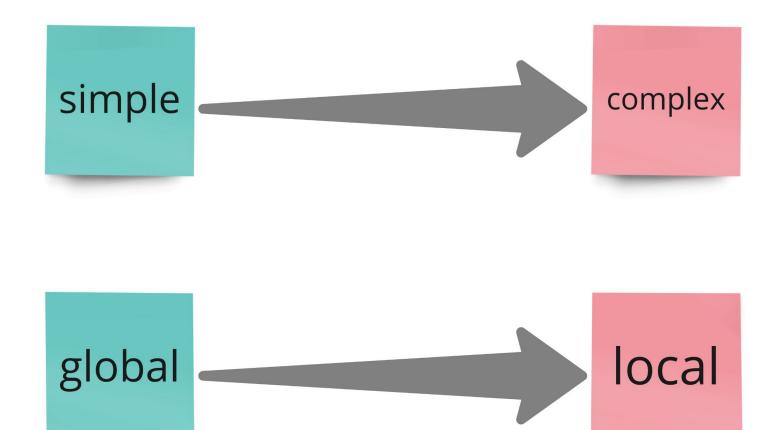
2.- Process using a simple model

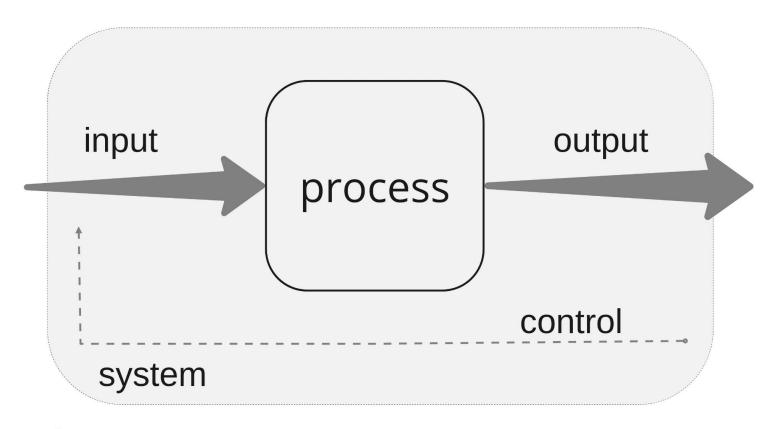

2.1. – Modeling our SW product

delivery


SW Product Life Cycle (theory)

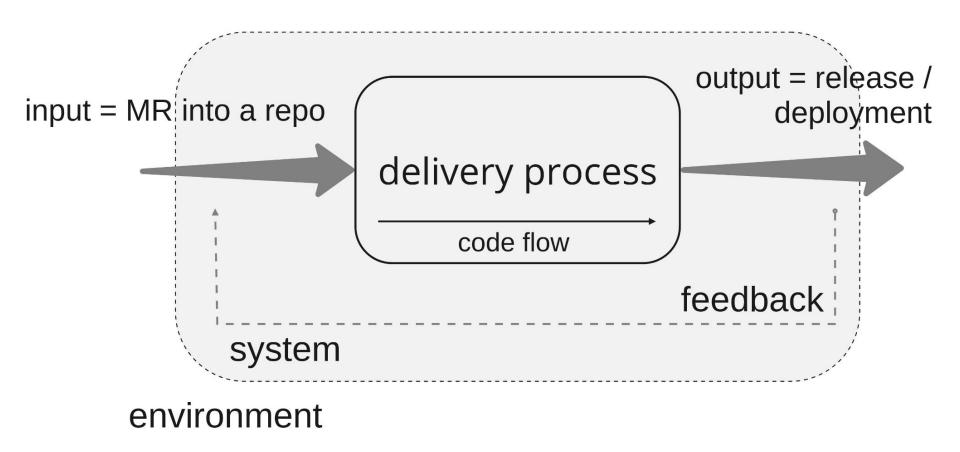
SW Product Life Cycle (reality)


Delivery described: value stream mapping


... the sciences do not try to explain, they hardly even try to interpret, they mainly make **models**. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed **phenomena**. The justification of such a mathematical construct is solely and precisely that it is expected to work—that is, correctly to describe phenomena from a reasonably wide area. - John von Neumann.

Systems thinking is a holistic approach to analysis that focuses on the way that a system's constituent parts interrelate and how systems work over time and within the context of larger systems.

Modelling applying system thinking



The simplest model of a system

environment

The simplest SW product delivery model

The simplest SW product delivery model

We are interested in understanding:

- How well the delivery process performs (**performance**) in our case, that is, how efficient/productive is.
- Some translation to the lean concept of delivery accuracy, which in case of software we can associate to quality.

In general, we want to understand the **value** we are delivering to the customer, not only linked to the delivery process but to the entire product life cycle.

2.2. – Define the mathematical construct: metrics characterization

Delivery metrics: description

- **Stability** is a measure of how reliable and robust is our process which has a close relation with the **quality** of the output.
- Throughput measures the efficiency with which our delivery process produces the output. It has a close relation with the **performance** of the process.
 - Cost of delay combines an understanding of value with how that value leaks away over time.

Delivery metrics: measures

Metrics Measures

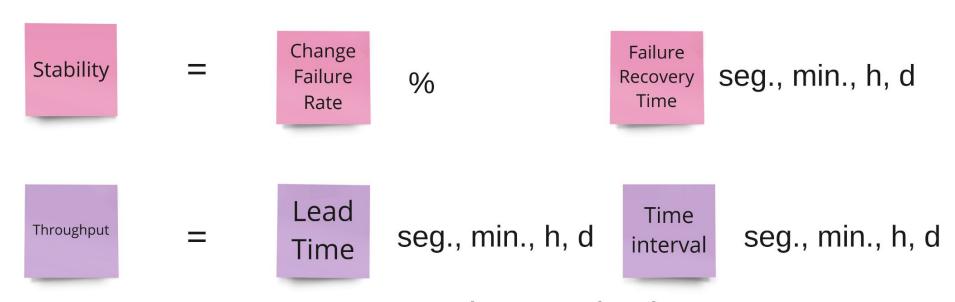
Stability = Change Failure and Rate

Throughput = Lead Time

and

Failure

Recovery


Time

Frequency — Time interval vs frequency

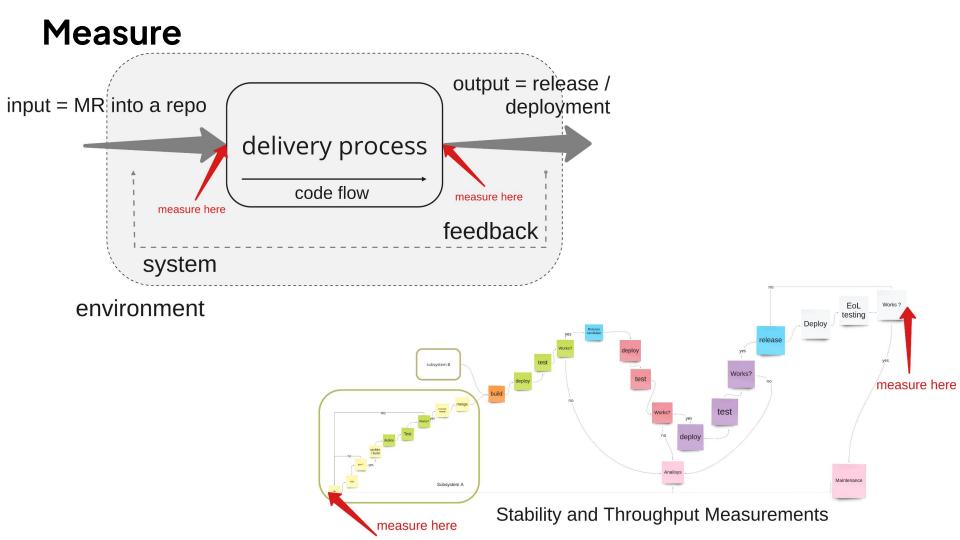
Delivery metrics: measures definition

Change Failure how many changes require remediation Rate Stability Failure Recovery how long it takes to discover and remediate a failed change Time Lead how long it takes to prepare and release/deploy a change Time Throughput Frequency how often changes are released/deployed

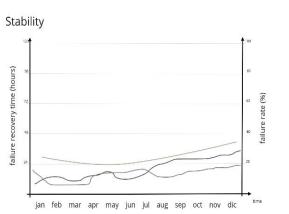
Delivery metrics: measures characterization

Data sets characterization

Data set characterised by the average and standard deviation, also referred as variation.

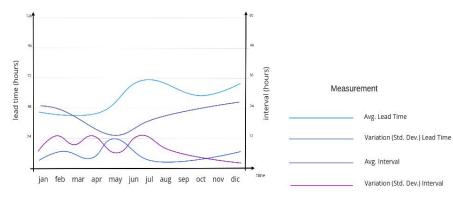

Remember...

If you only quantify one thing, quantify Cost of

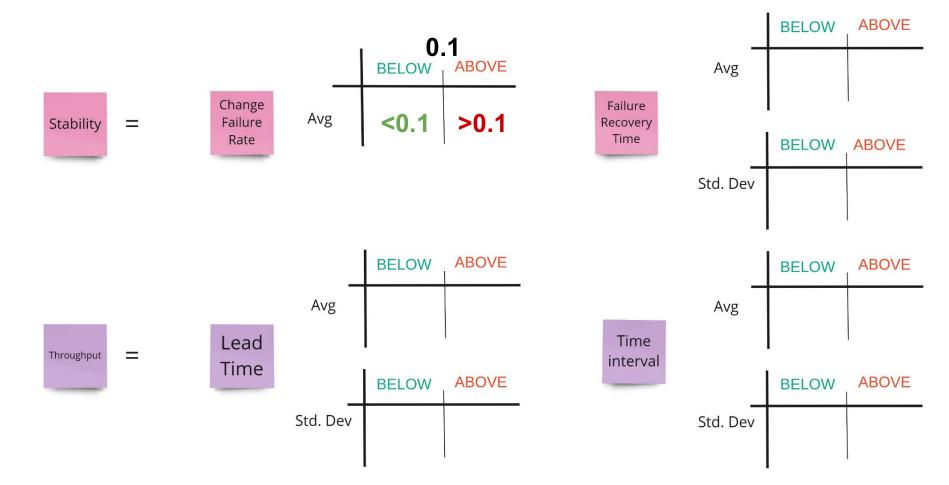

Delay. - Donald G. Reinertsen

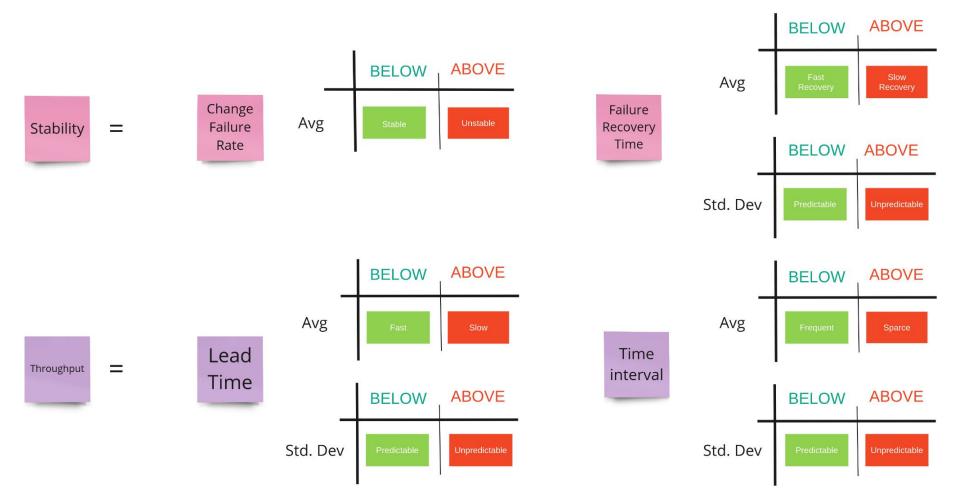

2.3. - Measure, Plot and Quantitative

Analysis



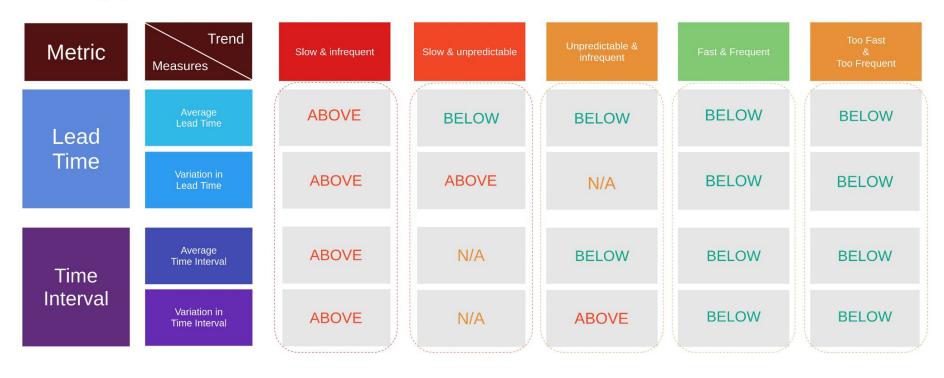
Plot



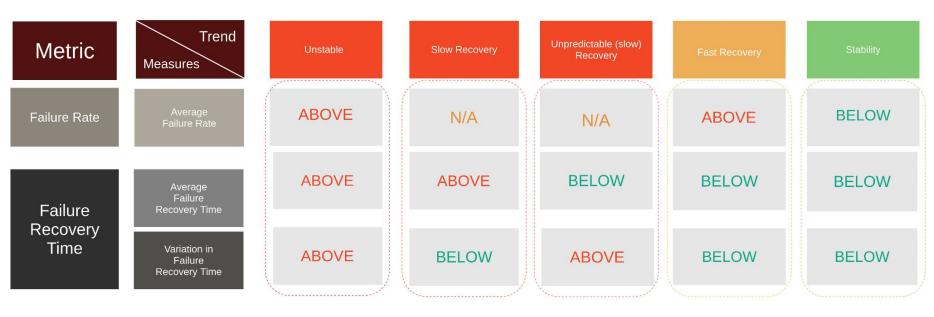

2.4. - From Quantitative to Qualitative

Analysis

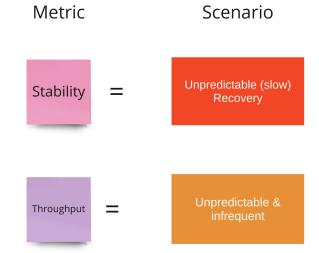
Define thresholds



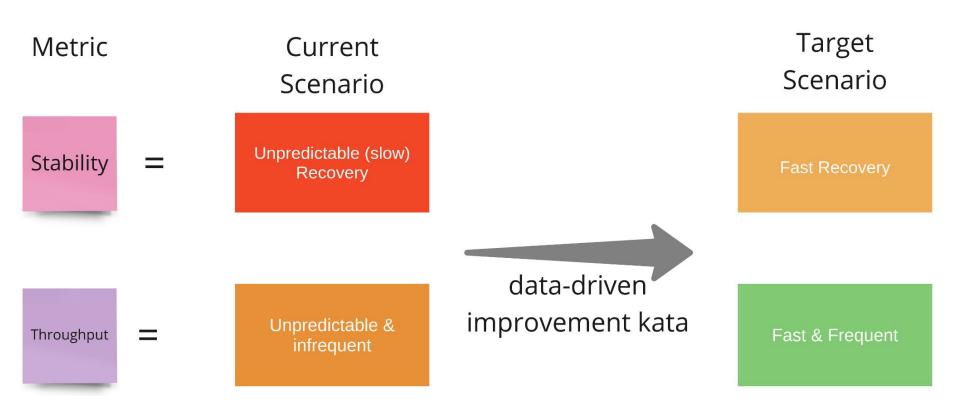
Define trends


Define scenarios

Throughput Scenarios

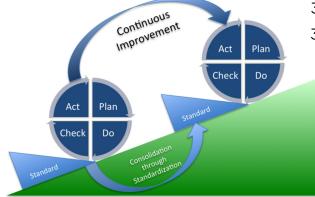

Define scenarios

Stability Scenarios


SW product delivery metrics: summary and example

ID	Metric	Description	Measures	Measurement process	Associated indicators	Threshold	Scenarios
CoD	Cost of Delay						
Т	Throughput						
S	Stability						

2.5. – From our current scenario to a target one: Continuous Improvement


From current to target scenario: example

Improvement kata definition

Key steps:

- Define success (business/product/technical): goal
- Plan the improvement cycle.
- 3. Execute: PDCA
 - 3.1. Plan: define the experiments
 - 3.2. Do: execute the experiments
 - 3.3. Check: evaluate the experiments
 - 3.4. Act: evaluate, consolidate the experiments when appropriate and re-define the target conditions.

Quality Improvement

Data-driven improvement kata

The continuous improvement process to follow is not just any kind of improvement kata, but a **data-driven** one. Every PDCA step is defined, tracked, evaluated and re-defined **based on the delivery metrics**.

Data-driven improvement kata: board

Priority	Action	Description	Current Condition	Target condition	Goal
1	Action / experiment name	Short description of the experiment: hypothesis, experiment, analysis and conclusions	Stability: Throughput: Other:	Stability: Throughput: Other	Stability: Throughput: Scenario:
2					
3					

- Each business goal refers to a cycle. It is recommended to define 1 year as initial cycle.
 - o Each goal should be defined based on Stability and Throughput metrics. For instance: to achieve X
 - Stability will increase by 50%, so failure change rate should be lower than 5% and Failure recovery time no longer than 5 hours.
 - Throughput will increase by 25% so lead time will go down to 12 hours and time interval down to 2 hours.
- The values on the "Current Condition" column come from the existing data.
- The target condition correspond to the goal for the coming iteration. It should also be defined in terms of overall stability and throughput.
- Limit the number of goals to 3 or 4, including at least one described in terms of a financial-type of value that can be related to CoD.

3.- Iterating the process. Addressing complexity

Define a more complex model

- This process works for a simple model, which provides highly useful insides.
- If it is the right process, it should work for more complex models too.
- What about the key elements of each step of the process?

The process when creating complex models

As expected, the procedure is basically the same:

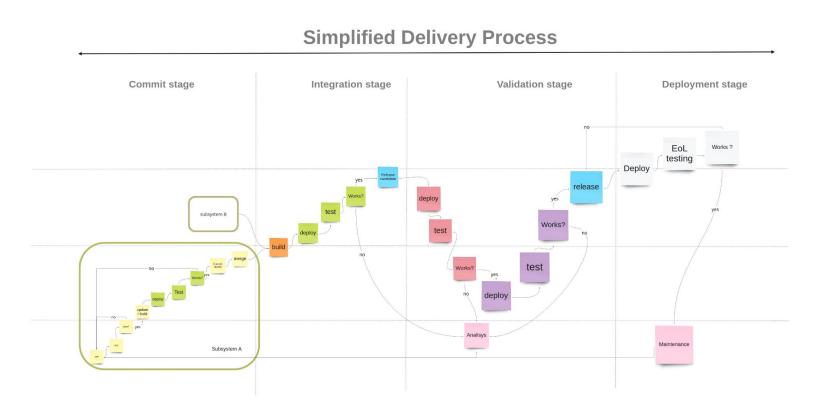
- 1. Structure your delivery process and create a model
- 2. Characterise the metrics to measure performance
- 3. Measure, plot and perform a quantitative analysis of the model
- 4. Move towards a qualitative analysis
- 5. Data-driven improvement kata to increase performance moving from the current to the target scenario.

3.1. - Creating a more complex model

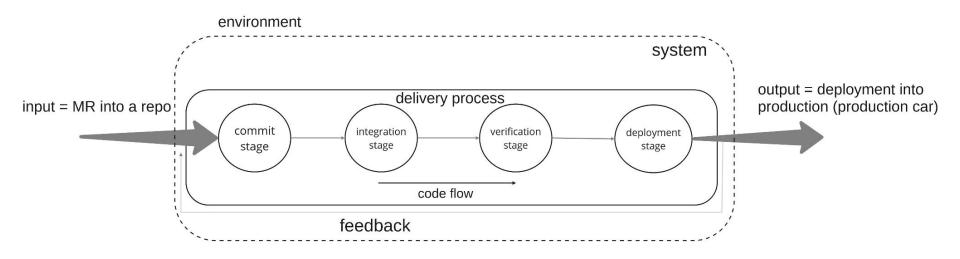
Definition of the product life cycle at high level

Reference Software Development Life Cycle (SDLC)

Delivery								
Design / Requirements definition stage	Development stage	Commit stage	Integration stage	Validation stage	Release stage	Deployment stage	EoL testing-verification	Maintenance

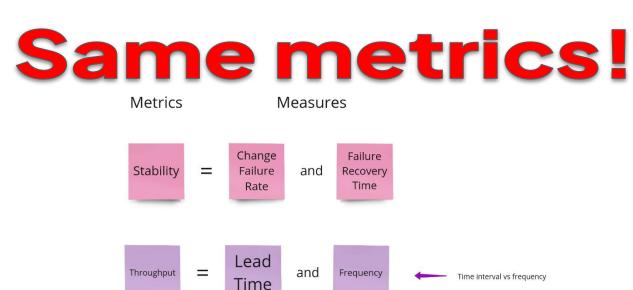

Definition of the delivery process at high level

Simplified Delivery Process

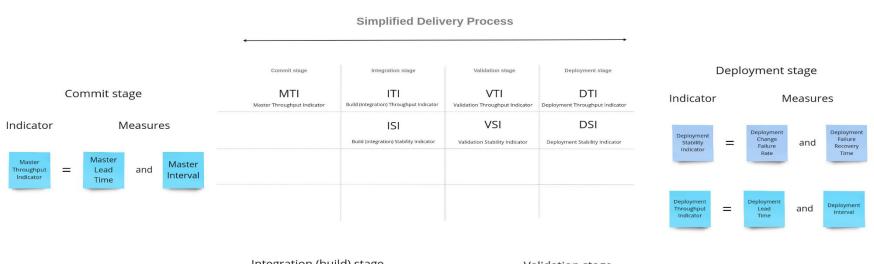

•			
Commit stage	Integration stage	Validation stage	Deployment stage

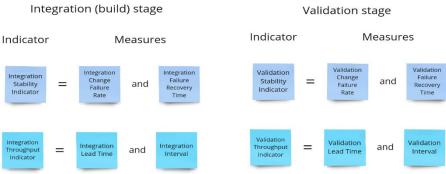
Structure your delivery process

Modelling your delivery process


New SW product delivery model

3.2. – Mathematical construct: metrics characterization for our new model

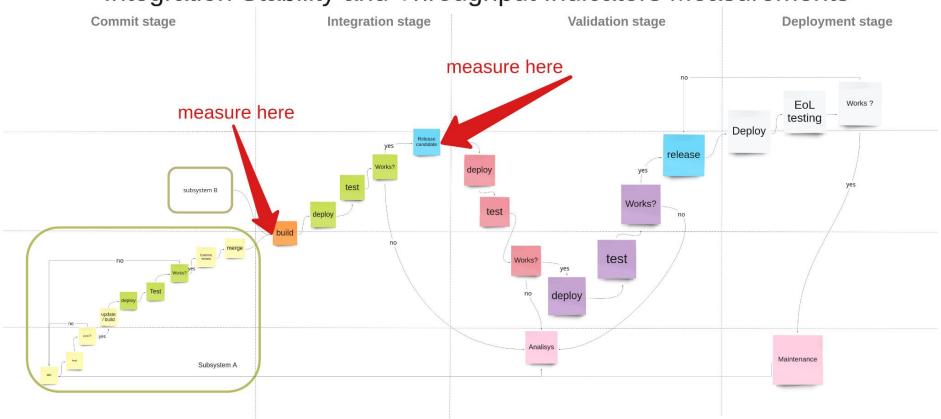

Metrics for the new model: definition


Metric ID	Name	Description	Measurement process	Associated Indicators	Trends and target threshold	Scenarios
CoD	Cost of Delay					
Т	Throughput					
S	Stability					

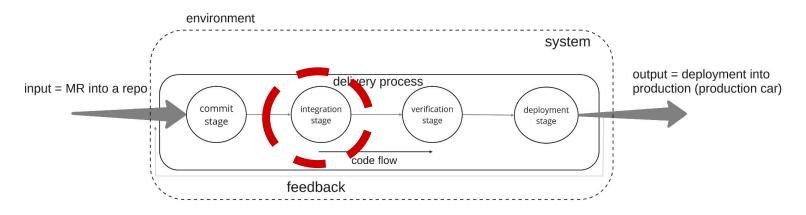
Indicators for each (sub)system of the model

Indicators definition

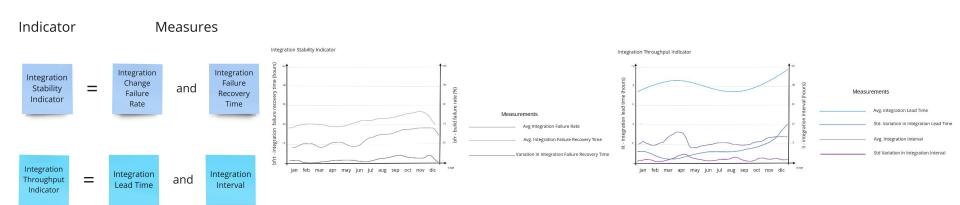
Same metrics


- Metrics for the simplified and this more detailed model are the same.
- Those metrics are consistently applied to each stage and the overall system.
- We can measure the impact of a local experiment locally, on each of the other (sub)systems and the overall system.

3.3. – Measure, Plot and Quantitative

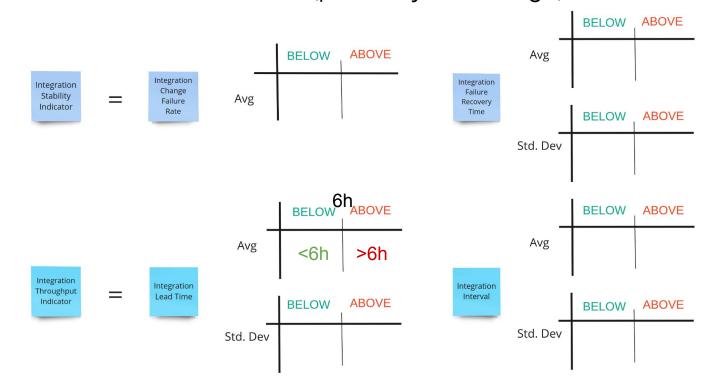

Analysis

Measure each indicator

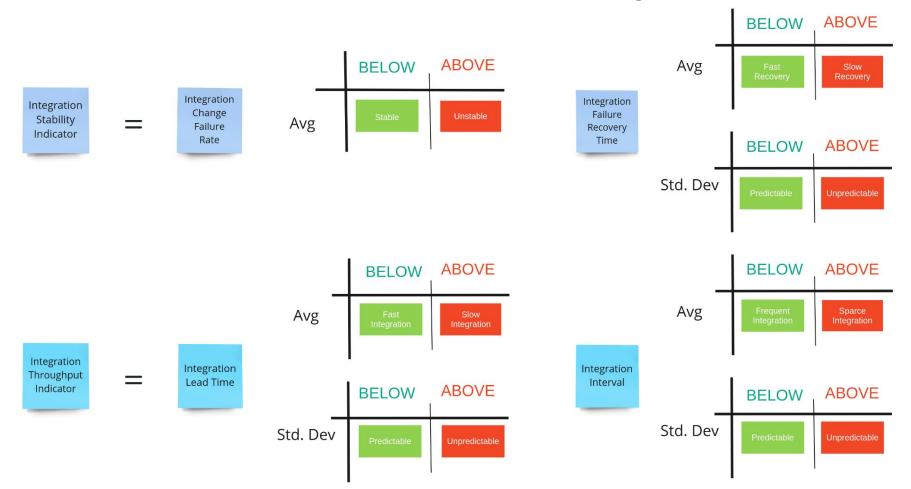

Integration Stability and Throughput Indicators Measurements

Measure each indicator

Integration (build) stage



3.4. - From Quantitative to Qualitative


Analysis

Define thresholds for each indicator: example

Now, in addition to a threshold for each of the measures corresponding to both metrics applied to the model of the entire system, you need to define thresholds for each measure of each indicator (persubsystem/stage).

Define trends for each indicator: example

Define scenarios

Integration Stability Indicator

Integration/build Integration/build Failure Rate Failure Recovery time Metrics Variation in Integration Integration Failure Failure Trend Recovery Time Recovery Time ABOVE ABOVE ABOVE ABOVE **BELOW** N/A Slow Recovery Unpredictable (slow) **BELOW ABOVE** N/A **ABOVE BELOW** BELOW BELOW BELOW BELOW

Integration Throughput Indicator

Integration/build Load Times

	Integration/build Lead Time Int		Integration/b	ouild Interval
Metrics Trend	Average Integration Lead Time	Variation in Integration Lead Time	Average Integration Interval	Variation in Integration Interval
Slow & infrequent builds	ABOVE	ABOVE	ABOVE	ABOVE
Slow & unpredictable builds	BELOW	ABOVE	N/A	N/A
Fast & infrequent builds	BELOW	BELOW	ABOVE	N/A
Unpredictable & infrequent builds	BELOW	N/A	BELOW	ABOVE
Too fast & too frequent builds	BELOW	BELOW	BELOW	BELOW
Fast & frequent builds	BELOW	BELOW	BELOW	BELOW

Integration /build Integral

Integration (build) stage

Indicator

Measures

Integration	
Throughput Indicator	=

Master Throughput Indicator

Indicator

Commit stage

Measures

Lead and Master Time Interval

	Integration/bald Falure Rate	Integration/build Failure Recovery time		
MATCO			variation in Build Folkers Recovery Time	
Protebbe	HIGH	HIGH	HIGH	
a Facmany	N/A	HIGH	LOW	
Scable (ston) fectivery	N/A	LOW	HIGH	
I. Miscovery	HIGH	LOW	LOW	
sooley	LOW	LOW	LOW	

Build Throughput Indicator

	Integration/build Lead Time		Integration/	build Interval
notice total		variation in male used flow	Average trails internal	Variation in Bull Interval
Situr & Inhoquent Builds	HIGH	HIGH	HIGH	HIGH
Sine & urpredicable builds	LOW	нан	N/A	NA
Fact & Infliequent builds	LOW	LOW	нон	NIA
providenski s relegione holds	LOW	N/A	LOW	HIGH
Too fact & see Request builds	LOW	LOW	LOW	LOW
Fact & Insperied Solids	LOW	LOW	LOW	LOW

Validation stage

ndicator	Measure

Validation Throughput Indicator	=	Validation Lead Time	and	Valid

Deployment stage

ndicator	measur

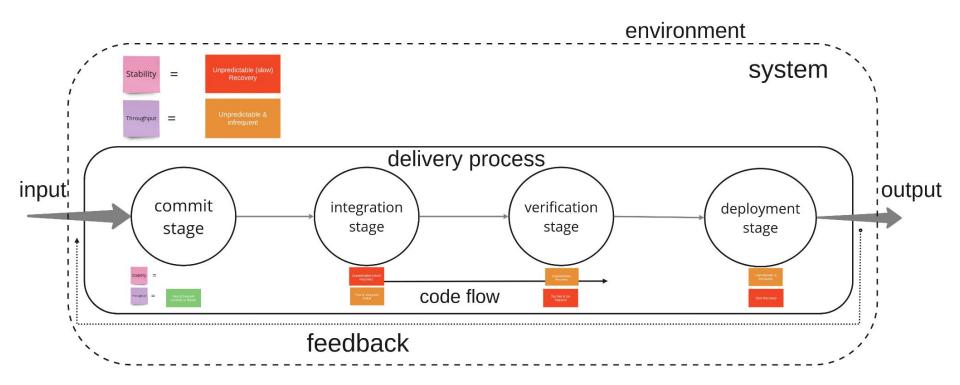
Deployment Throughput Indicator	=	Deployment Lead Time	and	Dep

Validation Stability Indicator

	Validation Failure Rate	Valid. Failure Rec	
Menica Trend	Average validation falore rate	Average Valdasové-alure Recovery Tend	Variation in Deployment Final Pe Recovery Ter
trestability	HIGH	HIGH	HIGH
Star Recovery	N/A	HIGH	LOW
Unpredictable Recovery	N/A	LOW	HIGH
Fast Recovery	HIGH	LOW	LOW
Society	LOW	LOW	LOW

Validation Throughput Indicator

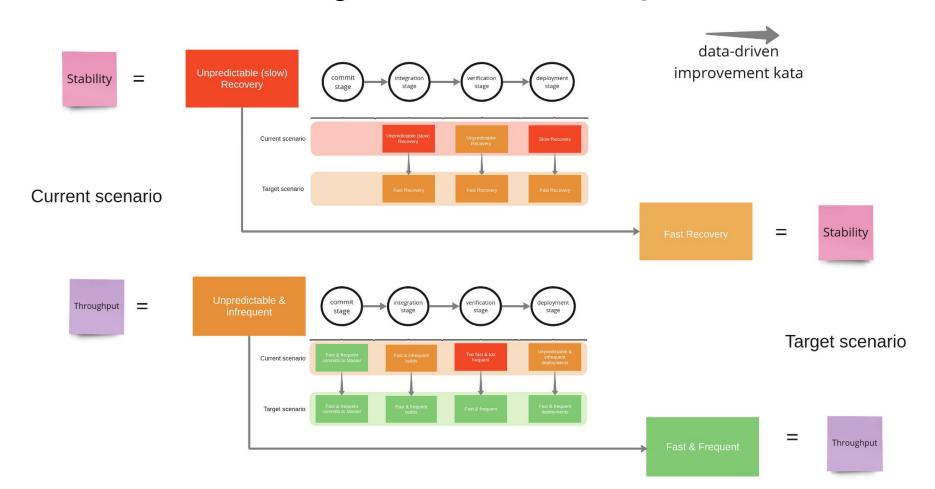
	Validation Lead Time		Validation Interval	
SEC.	Company Comment	Vanisher III Charleyment Lead Time	Aumage Deployment Interval	Variation in Conjugated Featured
Size & inflaquent	HIGH	HIGH	нон	HIGH
iow a urpredictable	LOW	HIGH	HIGH	NA
Fact A Hilmount	LOW	LOW	нан	NA
Unpredictable & obsequent	LOW	N/A	LOW	нон
for fact a too Sequest	LOW	LOW	LOW	LOW
	LOW	LOW	LOW	LOW


Deployment Stability Indicator

	Deployment Tolure Rate	Deployment Failure Recovery time	
Metrics Trend		Average Dealtymere Fallone Resovery Time	Variation in Deployment Failure Precevery Ta
Ivestability	HIGH	HIGH	HIGH
Star Recovery	N/A	HIGH	LOW
Unpredicable Recovery	N/A	LOW	HIGH
Fast Recovery	HIGH	LOW	LOW
Society	LOW	LOW	LOW

Deployment Throughput Indicator

	Deployment Lead Time		Deployment Interval	
MOLL	Learnings Engity travil Laud Time	Verlation in Depletories Land Time	Average Deployment Market	Verlation In Deplayment Internal
low & Infroquence	нан	HIGH	HIGH	нян
w A crys edicador	LOW	нюн	нон	NIA
ar a stequen	LOW	LOW	HIGH	NIA
reproducable s obsequent	LOW	NIA	LOW	нан
Too bed & too Frequent	LOW	LOW	LOW	LOW
Cart & hypant	LOW	LOW	LOW	LOW


Current scenario: example

3.5. - From our current scenario to a

target one: Continuous Improvement

From current to target scenario: example

There is no time to cover this...

You can get a short summary of how to approach the data-driven improvement kata for this extended model in the blog post below. In any case, it is highly dependant on the organization structure:

 Improve your software product delivery process performance using metrics (II)

There is plenty of literature on this topic you can check.

4.- Summary

The price of light is less than the cost of darkness.-Arthur C. Nielsen.

Errors using data are much less than those using no data at all. - Charles Babbage

I never guess. It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.- Sir Arthur Conan Doyle, Author of Sherlock Holmes stories

The more uncertainty you have, the bigger uncertainty reduction you get from just a few

data points. - Douglas W. Hubbard

Goal: turn data...

... into information then

... into insights.

The goal is to turn data into information, and information into insight. - Carly Fiorina.

Summary

- 1. Convinced on the relevance of metrics applied to your delivery system? If not, iterate. If yes, keep reading.
- 2. Model your delivery system.
- 3. Select CoD, Throughput and Stability as core delivery process performance metrics (delivery metrics).
- 4. Measure, plot and analyse the data (quantitative analysis).
- 5. Move from a quantitative to a qualitative analysis: define thresholds, trends and define scenarios.
- 6. Which scenario are you in? Where do you want to be? Define a data-driven improvement kata.

5. - More information and references

More information...

This process and the following steps to apply it at scale are described in two blog posts:

- Improve your software product delivery process performance using metrics (I)
- Improve your software product delivery process performance using metrics (II)

Links and References

References.

- 1. Main reference: "Measuring Continuous Delivery". Author: Steve Smith Publisher: Leanpub
- 2. "<u>The Principles of Product Development Flow</u>". Author: <u>Donald G. Reinerstsen</u>. Publisher: Celebritas Publishing.
- 3. "Continuous Delivery". Authors: <u>Jez Humble</u> and <u>David Farley</u>. Publisher: Addison Wesley.
- 4. There are more references on the <u>Reads</u> section of my site.

Copyright assignments

- 1. Several of the representations are inspired or based in those included in the book "Measuring Continuous Delivery", Author: <u>Steve Smith Publisher: Leanpub.</u>
- 2. Emojis. Creazilla.com Pubic Domain. Slides 67 and 68.
- 3. <u>Blind man pic</u>. Slide 66
- 4. Improvement kata. By Johannes Vietze Own work, CC BY-SA 3.0. Slide 34

This presentation is license under CC-BY-SA except those images under the above section.

Thank You!

- to the OpenSouthCode organisers for inviting me as speaker.
- to you for attending to this dense talk...during the last slot of the event!

Uso de Métricas en Producción de SW. a Escala

Delivery metrics

OpenSouthCode 2023 2023-06-10 Málaga. Spain

Agustín Benito Bethencourt Independent consultant